
Legion of the Bouncy Castle Inc.

PQC-Addon

User Guide

Version: 1.0.1 Date: 05/04/22

Legion of the Bouncy Castle Inc.
(ABN 84 166 338 567)
https://www.bouncycastle.org

https://www.bouncycastle.org/

Copyright and Trademark Notice

This document is licensed under a Creative Commons Attribution 3.0 Unported License
(http://creativecommons.org/licenses/by/3.0/)

http://creativecommons.org/licenses/by/3.0/

Acknowledgements
Work on this project has been funded through support contract consulting hours made available
from holders of Bouncy Castle support contracts with https://www.cryptoworkshop.com.

For further information about this distribution, or to help support this work further, please contact us
at office@bouncycastle.org.

mailto:office@bouncycastle.org

Table of Contents
1 Introduction...5
2 Installation...6
3 Using the PQC-Addon Package..7

3.1 An Example of NHOtherInfoGenerator...7
3.2 An Example of PQCOtherInfoGenerator...8
3.3 Using NHSecretKeyProcessor...9
3.4 Using PQCSecretKeyProcessor...10

1 Introduction
This document discusses an experimental API put together to allow a PQC key exchange and KEM
to be piggy backed onto a regular key exchange using either KAS, or key transport using algorithms
like RSA.

The PQC-addon is currently built on the New Hope key exchange algorithm and the round 3 NIST
PQC candidate algorithms FrodoKEM and Classic McEliece. This is hidden in the API and public
wise it allows for transforming an existing secret key using XOR, or it can be used to generate a
KAS OtherInfo object where the supplementary private information is filled in using the result of
the New Hope key exchange.

The addon is designed for “least harm” in the sense that assuming PQC algorithms really do stand
the test of time, it will protect exchanged keys for well past the time the regular algorithms become
obsolete. On the other hand, if it turns out to be flawed, the worst case security should be that
associated with the original pre-quantum algorithms used.

The addon is the result of thought processes which began with a submission to NIST which can be
found at: https://csrc.nist.gov/CSRC/media/Publications/nistir/8105/final/documents/nistir-8105-
public-comments-mar2016.pdf when we at BC were looking for ways of “filling in the gap” that we
seem to be currently in.

https://csrc.nist.gov/CSRC/media/Publications/nistir/8105/final/documents/nistir-8105-public-comments-mar2016.pdf
https://csrc.nist.gov/CSRC/media/Publications/nistir/8105/final/documents/nistir-8105-public-comments-mar2016.pdf

2 Installation
The bcpqc-addon jar can be installed in either jre/lib/ext for your JRE/JDK, or in many cases, on the
general class path defined for the application you are running. While the jar does make use of some
classes in the published BC-FJA API, it does not need to be loaded by any system class loaders and
does its work in application space.

3 Using the PQC-Addon Package
The PQC add on has 5 public classes and two interfaces. The five public classes are
NHOtherInfoGenerator, NHSecretKeyProcessor, PQCParameters, PQCOtherInfoGenerator, and
PQCSecretKeyProcessor. The first two of these classes make use of the New Hope key exchange
algorithm internally so there are a couple of steps that must be performed by both parties to the
original secret key exchange to allow the process to work. The second two classes currently make
use of the Round 3 candidate algorithms FrodoKEM and Classic McEliece.

3.1 An Example of NHOtherInfoGenerator
For the most part, the NHOtherInfoGenerator looks like a regular OtherInfoGenerator in line with
what is described in NIST SP 800-56A. The initial parameters provide distinguisher input for the IV
to be used with the eventual KDF invocation that specify the base algorithm for the KDF and the
identity of party U and party V – the two parties taking part in the agreement process.

Where the parameters diverge is on the last one, the SecureRandom which is needed to provide the
entropy for the New Hope key exchange. This makes up for the lack of a pre-shared secret at the
start of the KAS agreement which the New Hope algorithm is used to generate.

The process of arriving at an OtherInfo object for use as user-keying material with the KAS
algorithm being used takes 4 steps and involves the exchange of information that can be public
between the two parties.

The first step is for party U to generate partA – which is effectively a New Hope public key. This is
done as follows:

SecureRandom random = new SecureRandom();
NHOtherInfoGenerator.PartyU partyU = new NHOtherInfoGenerator.PartyU(

new AlgorithmIdentifier(NISTObjectIdentifiers.id_sha256),
 Hex.decode("beef"), Hex.decode("cafe"), random);

byte[] partA = partyU.getSuppPrivInfoPartA();

The second step is for party V to create their own generator and take the initial partA data to
generate a response (partB) to send back to party U.

SecureRandom random = new SecureRandom();
NHOtherInfoGenerator.PartyV partyV = new NHOtherInfoGenerator.PartyV(

new AlgorithmIdentifier(NISTObjectIdentifiers.id_sha256),
Hex.decode("beef"), Hex.decode("cafe"), random);

byte[] partB = partyV.getSuppPrivInfoPartB(partA);

The third step is for party U to generate the final OtherInfo object by using partB as follows.

DEROtherInfo otherInfoU = partyU.generate(partB);

At this point all that is required is for party V to use their generator to complete the process.

DEROtherInfo otherInfoV = partyV.generate();

The encoding of the OtherInfo objects can then be passed as user keying material. Assuming
keypairs are already available for ECCDH for party U (kpU) and party V (kpV) for a simple case
this can be done using the following for party U:

KeyAgreement agreementU = KeyAgreement.getInstance(
 "ECCDHwithSHA256KDF", "BCFIPS");
agreementU.init(
 kpU.getPrivate(), new UserKeyingMaterialSpec(otherInfoU.getEncoded()));

agreementU.doPhase(kpV.getPublic(), true);

byte[] secretU = agreementU.generateSecret();

and the following for party V:

KeyAgreement agreementV = KeyAgreement.getInstance(
 "ECCDHwithSHA256KDF", "BCFIPS");
agreementV.init(
 kpV.getPrivate(), new UserKeyingMaterialSpec(otherInfoV.getEncoded()));

agreementV.doPhase(kpU.getPublic(), true);

byte[] secretV = agreementV.generateSecret();

secretU and secretV, or whatever variant of the generateSecret() method you use, will be the
same value, but in addition to the regular KAS shared secret will also have the post-quantum New
Hope shared secret mixed into them.

Note that the classes from the NHOtherInfoGenerator are single use.

3.2 An Example of PQCOtherInfoGenerator
The PQCOtherInforGenerator is similar to the NHOtherInfoGenerator except it requires the passing
in of the PQC KEM algorithm to use. Also, as the KEM algorithms dynamically generate secrets
internally and the public keys involved are not single use the class can be reused.

The process of arriving at an OtherInfo object for use as user-keying material with the KAS
algorithm being used takes 4 steps and involves the exchange of information that can be public
between the two parties.

The first step is for party U to generate partA – which is the KEM public key. For FrodoKEM, this
is done as follows:

SecureRandom random = new SecureRandom();
PQCOtherInfoGenerator.PartyU partyU = new PQCOtherInfoGenerator.PartyU(

PQCParameters.mceliece348864fr,
new AlgorithmIdentifier(NISTObjectIdentifiers.id_sha256),

 Hex.decode("beef"), Hex.decode("cafe"), random);

byte[] partA = partyU.getSuppPrivInfoPartA();

The second step is for party V to create their own generator and take the initial partA data to
generate a response (partB) to send back to party U.

SecureRandom random = new SecureRandom();
PQCOtherInfoGenerator.PartyV partyV = new PQCOtherInfoGenerator.PartyV(

PQCParameters.mceliece348864fr,

new AlgorithmIdentifier(NISTObjectIdentifiers.id_sha256),
Hex.decode("beef"), Hex.decode("cafe"), random);

byte[] partB = partyV.getSuppPrivInfoPartB(partA);

The third step is for party U to generate the final OtherInfo object by using partB as follows.

DEROtherInfo otherInfoU = partyU.generate(partB);

At this point all that is required is for party V to use their generator to complete the process.

DEROtherInfo otherInfoV = partyV.generate();

The encoding of the OtherInfo objects can then be passed as user keying material. Assuming
keypairs are already available for ECCDH for party U (kpU) and party V (kpV) for a simple case
this can be done using the following for party U:

KeyAgreement agreementU = KeyAgreement.getInstance(
 "ECCDHwithSHA256KDF", "BCFIPS");
agreementU.init(
 kpU.getPrivate(), new UserKeyingMaterialSpec(otherInfoU.getEncoded()));

agreementU.doPhase(kpV.getPublic(), true);

byte[] secretU = agreementU.generateSecret();

and the following for party V:

KeyAgreement agreementV = KeyAgreement.getInstance(
 "ECCDHwithSHA256KDF", "BCFIPS");
agreementV.init(
 kpV.getPrivate(), new UserKeyingMaterialSpec(otherInfoV.getEncoded()));

agreementV.doPhase(kpU.getPublic(), true);

byte[] secretV = agreementV.generateSecret();

secretU and secretV, or whatever variant of the generateSecret() method you use, will be the
same value, but in addition to the regular KAS shared secret will also have the post-quantum KEM
shared secret mixed into them.

3.3 Using NHSecretKeyProcessor
There are not many situations that you cannot deal with by just making use of a KDF and using
whatever secret key you have as the seed for it. That said, there is another way to make use of the
key exchange, which can be simpler as well.

The concepts behind the NHSecretKeyProcessor: making use of the U ⊕ V operation in SP 80-133,
which is also discussed in FIPS IG 7.8 concerning post processing of secret keys. The long and the
short of it is that it is safe to XOR a value with an existing secret key. You might do this in real life
between two parties where you are also treating the value as a shared secret. In any case, the
NHSecretKeyProcessor takes the New Hope key exchange value and applies it to a SHAKE-256
operator which is then used to generate bytes to XOR with a passed in secret key, producing a new
secret key.

As with the OtherInfo generator, setting up a secret key processor is a four step process.

In the first step, party U needs to generate the partA component to send to party V.

SecureRandom random = new SecureRandom();
NHSecretKeyProcessor.PartyUBuilder partyU = new NHSecretKeyProcessor
 .PartyUBuilder(random);
byte[] partA = partyU.getPartA();

In the second step, party V takes the data sent by party U and applies the data to its own builder,
producing partB.

SecureRandom random = new SecureRandom();
NHSecretKeyProcessor.PartyVBuilder partyV = new NHSecretKeyProcessor
 .PartyVBuilder(random);
byte[] partB = partyV.getPartB(partA);

PartB is then sent back to party U, who uses the data to construct their own version of the
SecretKeyProcessor.

SecretKeyProcessor uProcessor = partyU.build(partB);

Finally party V calls its own builder and both parties are now in sync.

SecretKeyProcessor vProcessor = partyV.build();

Assuming a common SecretKey, agreedKey, has been arrived at by other means, the
SecretKeyProcessor can be applied to produce a new key by passing the agreedKey to the
processKey() method. For both party U, as in:

SecretKey uKey = uProcessor.processKey(agreedKey);

and party V:

SecretKey vKey = vProcessor.processKey(agreedKey);

Note that the classes from the NHSecretKeyProcessor are single use.

3.4 Using PQCSecretKeyProcessor
The PQCSecretKeyProcessor is a drop in replacement for the NHSecretKeyProcessor – the only
extra requirement being the need to provide a KEMParameters object from the PQCParameters
class to describe which KEM is in use.

As the KEM algorithms supported make use of re-usable public keys the PartyU class can be reused
and does not need to be recreated for each use.

	1 Introduction
	2 Installation
	3 Using the PQC-Addon Package
	3.1 An Example of NHOtherInfoGenerator
	3.2 An Example of PQCOtherInfoGenerator
	3.3 Using NHSecretKeyProcessor
	3.4 Using PQCSecretKeyProcessor

